Прорачуни за побољшање фактора снаге у једнофазној мрежи

Прорачуни за побољшање фактора снаге у једнофазној мрежиУ мрежи наизменичне струје скоро увек постоји фазни помак између напона и струје, јер су на њу повезане индуктивности - трансформатори, пригушнице и углавном асинхрони мотори и кондензатори - каблови, синхрони компензатори итд.

Дуж ланца означеног танком линијом на сл. 1, резултујућа струја И пролази са фазним помаком φ у односу на напон (слика 2). Струја И се састоји од активне компоненте Иа и реактивног (магнетизирајућег) ИЛ. Постоји фазни помак од 90° између компоненти Иа и ИЛ.

Криве напона на терминалу извора У, активног састојка Иа и струје магнетизирања ИЛ приказане су на Сл. 3.

У оним деловима периода, када струја И расте, расте и магнетна енергија поља завојнице. У то време електрична енергија се претвара у магнетну енергију. Када се струја смањи, магнетна енергија поља завојнице се претвара у електричну енергију и враћа у електричну мрежу.

У активном отпору електрична енергија се претвара у топлоту или светлост, а у мотору у механичку енергију. То значи да активни отпор и мотор претварају електричну енергију у топлоту и, респективно, механичку енергију калем (индуктивност) или кондензатор (кондензатор) не троши електричну енергију, јер се у тренутку коагулације магнетног и електричног поља потпуно враћа у електроенергетску мрежу.

Слика 1

Пиринач. 1.

Векторски дијаграм

Пиринач. 2.

Криве напона на прикључцима извора У, активног састојка Иа и струје магнетизирања

Пиринач. 3.

Што је већа индуктивност калема (види слику 1), већа је струја ИЛ и фазни помак (слика 2). Са већим померањем фазе, фактор снаге цосφ и активна (корисна) снага су мањи (П = У ∙ И ∙ цосφ = С ∙ цосφ).

Са истом укупном снагом (С = У ∙ И ВА), коју, на пример, генератор даје мрежи, активна снага П биће мања при већем углу φ, тј. при мањем фактору снаге цосφ.

Попречни пресек жица за намотаје мора бити пројектован за примљену струју И. Стога је жеља електроинжењера (енергетичара) да смање фазни помак, што доводи до смањења примљене струје И.

Једноставан начин да се смањи фазни помак, односно да се повећа фактор снаге, јесте да се кондензатор повеже паралелно са индуктивним отпором (сл. 1, коло је заокружено подебљаном линијом). Смер капацитивне струје ИЦ је супротан смеру струје магнетизирања завојнице ИЛ. За одређени избор капацитивности Ц, струја ИЦ = ИЛ, односно доћи ће до резонанце у колу, коло ће се понашати као да не постоји капацитивни или индуктивни отпор, односно као да постоји само активни отпор у коло.У овом случају, привидна снага је једнака активној снази П:

С = П; У ∙ И = У ∙ Иа,

из чега следи да је И = Иа, а цосφ = 1.

Са једнаким струјама ИЛ = ИЦ, односно једнаким отпорима КСЛ = КСЦ = ω ∙ Л = 1⁄ (ω ∙ Ц), цосφ = 1 и фазни помак ће се компензовати.

Дијаграм на сл. 2 показује како додавање струје ИЦ резултујућој струји И преокреће промену. Гледајући затворено коло Л и Ц, можемо рећи да је калем повезан серијски са кондензатором, а струје ИЦ и ИЛ теку једна за другом. Кондензатор, који се наизменично пуни и празни, обезбеђује струју магнетизирања Иμ = ИЛ = ИЦ у калему, коју мрежа не троши. Кондензатор је врста батерије наизменичне струје за магнетизовање завојнице и замену мреже, што смањује или елиминише фазни помак.

Дијаграм на сл. 3 осенчене области полупериода представљају енергију магнетног поља која се трансформише у енергију електричног поља и обрнуто.

Када је кондензатор повезан паралелно са мрежом или мотором, резултујућа струја И опада на вредност активне компоненте Иа (видети сл. 2.) Серијским повезивањем кондензатора са завојницом и напајањем, компензација може се постићи и фазни помак. Серијска веза се не користи за цосφ компензацију јер захтева више кондензатора од паралелне везе.

Примери 2-5 у наставку укључују прорачуне вредности капацитета у чисто образовне сврхе. У пракси, кондензатори се наручују не на основу капацитета, већ на основу реактивне снаге.

Да бисте компензовали реактивну снагу уређаја, измерите У, И и улазну снагу П.По њима одређујемо фактор снаге уређаја: цосφ1 = П / С = П / (У ∙ И), који треба побољшати на цосφ2> цосφ1.

Одговарајуће реактивне снаге дуж троуглова снага биће К1 = П ∙ танφ1 и К2 = П ∙ танφ2.

Кондензатор мора да компензује разлику реактивне снаге К = К1-К2 = П ∙ (танφ1-танφ2).

Примери

1. Једнофазни генератор у малој електрани је пројектован за снагу С = 330 кВА на напон У = 220 В. Која је највећа струја мреже коју генератор може да обезбеди? Коју активну снагу генерише генератор са чисто активним оптерећењем, односно са цосφ = 1, и са активним и индуктивним оптерећењем, ако је цосφ = 0,8 и 0,5?

а) У првом случају генератор може да обезбеди максималну струју И = С / У = 330.000 /220 = 1500 А.

Активна снага генератора под активним оптерећењем (плоче, лампе, електричне пећи, када нема фазног помака између У и И, тј. при цосφ = 1)

П = У ∙ И ∙ цосφ = С ∙ цосφ = 220 ∙ 1500 ∙ 1 = 330 кВ.

Када је цосφ = 1, пуна снага С генератора се користи у облику активне снаге П, односно П = С.

б) У другом случају, са активним и индуктивним, тј. мешовитих оптерећења (лампе, трансформатори, мотори), долази до померања фазе и укупна струја И ће садржати, поред активне компоненте, струју магнетизирања (види слику 2). При цосφ = 0,8, активна снага и активна струја ће бити:

Иа = И ∙ цосφ = 1500 ∙ 0,8 = 1200 А;

П = У ∙ И ∙ цосφ = У ∙ Иа = ​​220 ∙ 1500 ∙ 0,8 = 264 кВ.

При цосφ = 0,8 генератор није оптерећен пуном снагом (330 кВ), иако кроз намотај и прикључне жице протиче струја И = 1500 А и загрева их.Механичка снага која се доводи до осовине генератора не сме се повећати, иначе ће струја порасти до опасне вредности у поређењу са оном за коју је намотај дизајниран.

в) У трећем случају, са цосφ = 0,5 повећаћемо индуктивно оптерећење још више у односу на активно оптерећење П = У ∙ И ∙ цосφ = 220 ∙ 1500 ∙ 0,5 = 165 кВ.

При цосφ = 0,5, генератор се користи само 50%. Струја и даље има вредност од 1500 А, али од чега се за користан рад користи само Иа = ​​И ∙ цосφ = 1500 ∙ 0,5 = 750 А.

Компонента струје магнетизирања Иμ = И ∙ синφ = 1500 ∙ 0,866 = 1299 А.

Ова струја мора бити компензована кондензатором прикљученим паралелно на генератор или потрошач како би генератор могао да напаја 330 кВ уместо 165 кВ.

2. Мотор једнофазног усисивача има корисну снагу П2 = 240 В, напон У = 220 В, струју И = 1,95 А и η = 80%. Потребно је одредити фактор снаге мотора цосφ, реактивна струја и капацитивност кондензатора, који изједначава цосφ са јединицом.

Испоручена снага електромотора је П1 = П2 / 0,8 = 240 / 0,8 = 300 В.

Привидна снага С = У ∙ И = 220 ∙ 1,95 = 429 ВА.

Фактор снаге цосφ = П1 / С = 300 / 429≈0,7.

Реактивна (магнетизирајућа) струја Ир = И ∙ синφ = 1,95 ∙ 0,71 = 1,385 А.

Да би цосφ био једнак јединици, струја кондензатора мора бити једнака струји магнетизирања: ИЦ = Ип; ИЦ = У / (1⁄ (ω ∙ Ц)) = У ∙ ω ∙ Ц = Ир.

Дакле, вредност капацитивности кондензатора при ф = 50 Хз Ц = Ир / (У ∙ ω) = 1,385 / (220 ∙ 2 ∙ π ∙ 50) = (1385 ∙ 10 ^ (- 6)) = 69. 20 μФ.

Када је кондензатор од 20 μФ повезан паралелно са мотором, фактор снаге (цосφ) мотора ће бити 1 и само ће активна струја Иа = ​​И ∙ цосφ = 1,95 ∙ 0,7 = 1,365 А трошити мрежу.

3. Монофазни асинхрони мотор корисне снаге П2 = 2 кВ ради на напону У = 220 В и фреквенцији 50 Хз. Ефикасност мотора је 80% и цосφ = 0,6. Коју банку кондензатора треба повезати са мотором да би се добио цосφ1 = 0,95?

Улазна снага мотора П1 = П2 / η = 2000 / 0,8 = 2500 В.

Резултујућа струја коју мотор троши при цосφ = 0,6 израчунава се на основу укупне снаге:

С = У ∙ И = П1 / цосφ; И = П1 / (У ∙ цосφ) = 2500 / (220 ∙ 0,6) = 18,9 А.

Потребна капацитивна струја ИЦ се одређује на основу кола на сл. 1 и дијаграми на Сл. 2. Дијаграм на сл.1 представља индуктивни отпор намотаја мотора са кондензатором спојеним паралелно са њим. Из дијаграма на сл. 2 окрећемо се дијаграму на сл. 4, где ће укупна струја И након повезивања кондензатора имати мањи помак φ1 и вредност смањену на И1.

Слика 4 на пример

Пиринач. 4.

Резултујућа струја И1 са побољшаним цосφ1 биће: И1 = П1 / (У ∙ цосφ1) = 2500 / (220 ∙ 0,95) = 11,96 А.

На дијаграму (слика 4), сегмент 1–3 представља вредност реактивне струје ИЛ пре компензације; она је окомита на вектор напона У. Сегмент 0-1 је активна струја мотора.

Фазни помак ће се смањити на вредност φ1 ако се струја магнетизирања ИЛ смањи на вредност сегмента 1-2. Ово ће се догодити када је кондензатор повезан на терминале мотора, смер струје ИЦ је супротан од струје ИЛ и величина је једнака сегменту 3–2.

Његова вредност ИЦ = И ∙ синφ-И1 ∙ синφφ1.

Према табели тригонометријских функција, налазимо вредности синуса који одговарају цосφ = 0,6 и цосφ1 = 0,95:

ИЦ = 18,9 ∙ 0,8-11,96 ∙ 0,31 = 15,12-3,7 = 11,42 А.

На основу вредности ИЦ одређујемо капацитет кондензаторске банке:

ИЦ = У / (1⁄ (ω ∙ Ц)) = У ∙ ω ∙ Ц; Ц = ИЦ / (У ∙ 2 ∙ π ∙ ф) = 11,42 / (220 ∙ π ∙ 100) = (11420 ∙ 10 ^ (- 6)) / 69,08≈165 μФ.

Након повезивања батерије кондензатора укупног капацитета 165 μФ на мотор, фактор снаге ће се побољшати на цосφ1 = 0,95. У овом случају мотор и даље троши струју магнетизирања И1синφ1 = 3,7 А. У овом случају, активна струја мотора је иста у оба случаја: Иа = ​​И ∙ цосφ = И1 цосφ1 = 11,35 А.

4. Електрана снаге П = 500 кВ ради на цосφ1 = 0,6, која се мора побољшати на 0,9. За коју реактивну снагу треба наручити кондензаторе?

Реактивна снага при φ1 К1 = П ∙ танφ1 .

Према табели тригонометријских функција, цосφ1 = 0,6 одговара танφ1 = 1,327. Реактивна снага коју постројење троши из електране је: К1 = 500 ∙ 1.327 = 663.5 квар.

Након компензације са побољшаним цосφ2 = 0,9, постројење ће трошити мање реактивне снаге К2 = П ∙ танφ2.

Побољшани цосφ2 = 0,9 одговара танφ2 = 0,484, а реактивна снага К2 = 500 ∙ 0,484 = 242 квар.

Кондензатори морају покрити разлику реактивне снаге К = К1-К2 = 663,5-242 = 421,5 квар.

Капацитет кондензатора је одређен формулом К = Ир ∙ У = У / кЦ ∙ У = У ^ 2: 1 / (ω ∙ Ц) = У ^ 2 ∙ ω ∙ Ц;

Ц = К: ω ∙ У ^ 2 = П ∙ (танφ1 — танφ2): ω ∙ У ^ 2.

Саветујемо вам да прочитате:

Зашто је електрична струја опасна?